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The coarsening process in a class of driven systems exhibiting striped structures is studied. The dynamics is
governed by the motion of the driven interfaces between the stripes. When two interfaces meet they coalesce
thus giving rise to a coarsening process in whiaf), the average width of a stripe, grows with time. This is
a generalization of the reaction-diffusion procAss A— A to the case of extended coalescing objects, namely,
the interfaces. Scaling arguments which relate the coarsening process to the evolution of a single driven
interface are given, yielding growth laws fef(t), for both short and long times. We introduce a simple
microscopic model for this process. Numerical simulations of the model confirm the scaling picture and growth
laws. The results are compared to the case where the stripes are not driven and different growth laws arise.

PACS numbegps): 05.40—a, 05.70.Ln, 05.70.Np, 64.60.Cn

I. INTRODUCTION More recently, attention has focused on systems far from
thermal equilibrium, driven by an external fidlél]. In many
Coarsening processes have been extensively studied bothses such systems reach a steady state in which, unlike the
experimentally and theoretically over the past decaded. equilibrium case, detailed balance is not obeyed. The lack of
Most of these studies deal with the way a system approachetetailed balance allows for many phenomena which do not
its thermal equilibriumstate. For example, when a liquid is occur in thermal equilibrium, such as phase separation and
guenched to temperatures below the liquid-gas transitiosymmetry breaking in one-dimensional systefi®,11].
point a coarsening process takes place as the system evolMéest of the recent studies of these systems have been fo-
towards the equilibrium phase separated state. In these sysdsed on the properties of the steady state itself rather than
tems the order parametéhe density is conserved and the on the evolution towards it. There are, however, indications
evolution proceeds by either nucleation growth or by spinthat coarsening processes in these systems may be rather
odal decompositiofi3]. Similar processes take place in mag- different from those of systems evolving toward their equi-
netic systems where a system evolves towards its magnetibrium state. For example, a study of the evolution of a
cally ordered state when quenched below its critical point. Indriven Ising model with conserving dynamics has shown that
that case, however, the order paramétee magnetization in one dimension the average domain size growst'&s
need not be conserved by the dynamics and the details of t@2,13 rather than the usuat’® expected for nondriven sys-
coarsening mechanism may differ from that of conservingems.
dynamics. The presence of the drive introduces a preferred direction
Typically coarsening processes are characterized by i space, making the systems inherently anisotropic. In many
single growing length scal€(t), for example the average of these systems this results in striped structures. Typical
domain size in the system. In many cases, at late times thexamples are the stepped structures which occur in surface
system reaches a scaling regime whef¢) ~t". The value growth[14] and wind ripples formed in sarid5,16. Many
of the exponent usually depends on the symmetry of the models of driven systems have been introduced and studied
system and its conservation laws. It has been found that for @ recent years. The striped structures that naturally emerge
scalar order parameter that is not conserved under the dynay be oriented either parallel or perpendicular to the driv-
namics(as is the case in many magnetic systethe growth  ing field, depending on the details of the dynanii@s For
exponent im=1/2[4]. This has been demonstrated theoreti-example, in a driven Ising model introduced by Katzal.
cally by numerous studies of Ising-type models with Glaubef{17] stripes parallel to the driving field of alternating up and
dynamicq5]. On the other hand, when the order parameter iglown spins are found at low temperatures. When the system
conserved(such as in liquid gas transitions and in phaseis quenched to the low temperature phase at high values of
separation in binary mixturgsthe coarsening process is the driving field narrow stripes are formed on a short time
slower and the growth exponent was found torbel/3. scale. On a longer time scale a coarsening process takes
This was first demonstrated by Lifshitz, Slyozov, and Wag-place in which the typical width of these stripes grows in
ner[6,7] and has been confirmed by many studies of Isingime as the system evolves towards a fully phase separated
models with Kawasaki dynamid8,2]. state. This coarsening process is rather different from the one
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infinite extent in the direction parallel to the drive and of
finite sizeL in the other directionfsee Fig. 1a)]. A detailed
(@) 1 2 3 4 51 definition of the microscopic model and its dynamics is

given in Sec. Il. Here we just describe the salient features.
(i) A microscopic state of the system is given by the con-
figurations of the interfaces separating adjacent stifipas

o 1(a)]. These interfaces are assumed to be single valued, that
1{2/3 is no bubbles or overhangs are present.
(b) —» 1)3 _5 1)3 (i) Each interface evolves under local driven dynamics.
2

For example, one can consider growth dynamics belonging
to the KPZ universality class. All interfaces evolve under the
same dynamical rules, and thus, in particular, they all move
in the same direction and with the same average velocity.

(i) When two interfaces meet at a point, they locally
merge to form a single interface. The evolution is such that
after some time the entire two interfaces coaldstg. 1(b)].

As a result of this dynamical process the number of inter-
faces keeps decreasing and the average width of a st(ige
increases with time. One is interested in studying the details
of this coarsening process.

One can think of the model in analogy toga—< state

FIG. 1. Schematic representation of the modal.Domains are
aligned parallel to each other, and are assigned orgg-ef spin
states in an ordered manngb) When two interfaces meet they
coalesce into a single interface.

taking place in a system evolving towards its equilibrium
state and is not well understodid,19. On the other hand, . ) )

stripes perpendicular to the drive direction are observed irll:)OttS system, wherg ??Ch S'te, IS a§5|gned a §p|n'va®ble
related spin-1 type models where two types of oppositely " 1,2,...4. In the initial configuration the spins in each

charged particles move in the presence of neutral vacanciédiP€ are given the same state and the state associated with
[20-22,38. each stripe increases in an ordered sequence, 1,2,3see

Recently, a different class of driven models, where phas&ig- 1(a@)]. Each stat&s=i propagates into states=j where
separation takes place even in one dimension, has been ih=i. Clearly, the dynamics is such that the order parameter
troduced 23—28. In this class of models three or more types (the density of particles of typ8) is not conserved since the
of particle are driven in a preferred direction under localnumber of particles of a given state changes in time. Related
dynamics. The important feature in these models is that thenodels have previously been considered in the context of
local dynamics results in a phase separated state even in owgclic food chain 30] and the evolution of the spatial mosaic
dimension D=1). It has been demonstrated thatDr=1 of single-species domains was studied.
the coarsening process which accompanies the phase separaAs a general motivation for the type of model we study,
tion is slow, by which it is meant that the average domainone may think of the spin state as representing the height of
size grows only logarithmically with time. An extension of a D-dimensional terraced surface. Thus the striped structure
one of the models belonging to this class to two and highecorresponds to a sequence of terraces of increasing height; an
dimensiond 29] showed that in dimensions greater than oneinterface between two stripes corresponds to a step. The sur-
stripes of alternating types of particles are formed perpenface evolves through particles being adsorbed or evaporated
dicular to the driving field. The width of the stripes along the from the steps. In this picture two coalescing interfaces cor-
direction of the driving field is found to grow as tiy(which ~ respond to a terrace of a given height being eliminated from
is the same growth law as the one dimensional case. This ike system. However, the model to be studied in this paper
related to the fact that the interfaces which separate adjaceahould not be viewed as a microscopic description of this
stripes are macroscopically smooth. particular growth process. Rather it provides a very simple

Given the common occurrence of striped structures in dif-dynamics that leads to coarsening of stripes with no bubbles
ferent classes of driven models, it is of interest to explore ther overhangs in the interfaces between stripes. In order to
possible coarsening phenomena within a wider range ofonstruct a realistic microscopic model for a particular sys-
models exhibiting these structures. For example, in the preiem (such as the terraced surfacene would have to add
ceding paragraph we described a driven system with conether features that would complicate analysis of the model.
serving dynamics exhibiting slow coarsening. This behavior The dynamical process described above is a generaliza-
can be attributed to the smoothness of the interfaces separdioen of the reaction diffusion process+A—A, in which
ing neighboring stripes. A natural question is as to how theliffusing A particles(either with or without a driveundergo
coarsening of stripes is altered when one considers mora merging reaction as they collide. In the present generaliza-
general scenarios such as, say, nonconserving dynamics ton the coalescing objects are not particles but extended ob-
dynamics which leads to rough interfaces separating thgcts, i.e., the interfaces between stripes, which are manifolds
stripes. in d=D—1 dimensions. TheA+A— A reaction diffusion

To investigate this issue we study in this paper a simplgrocess has been studied in detail over the yg#ib It has
model for the evolution of driven striped structures. In thebeen found that for both biased and unbiased diffusion the
model stripes emerge oriented perpendicular to the drivinglensity (or equivalently the average distance between par-
field. The microscopic dynamics is nonconserving and rougtiicles) decays a$~ 2 for D<2 andt™* for D>2 [32]. It is
interfaces between the stripes arise. We consider a system of interest to investigate how this behavior is changed for the
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generalization to coalescing manifolds. In the present con-
textthe manifolds themselves evolve in time, due to a rough- s S
ening process, which could also affect the behavior. 1
The scaling properties of driven manifolds are different
from those of stationary ones. It is of interest to consider the
evolution of striped structures when the interfaces are non-
driven. In this case the dynamics can be related to an energy
function. As we shall see, the coarsening process is affected
by whether or not the interfaces are driven, unlike the case of
coalescing particles described in the previous paragraph. N
In studying the model we find that the coarsening process
may be well understood by considering the scaling properties g g 1)
of an isolated interface. We find that the evolution is differ-
ent at early and late times. In both regimes the average do-
main size/(t) grows algebraically in time. The different
regimes, however, are characterized by different exponentwhere an empty square indicates that the move is attempted
These exponents are determined by the universal properti@$espective of the type of particle at that site.
of the isolated interfaces and can therefore be deduced using Given the initial conditions, this dynamics ensures that
scaling arguments. Moreover, the exponents depend othhe species index always increases to the right, along the
whether the interfaces are driven or not. direction. This is equivalent to stating that the interfaces are
The paper is organized as follows. In Sec. Il we define thesingle valued and that the order among the interfaces is pre-
model. In Sec. Il a scaling argument which is based on th&erved. Furthermore, whegn<1 the dynamics is such that
properties of an isolated interface is used to deduce thepecies is driven preferentially to the right into neighboring
coarsening behavior. Monte Carlo simulations which verifySPecies wherej>i. The casep=1 is special in that inter-
the scaling argument are described in Sec. IV. In Sec. V thé&aces are not driven. In the following we consi¢er 1 and
special case where the interfaces are nondriven and ener{e discuss the special cage=1 towards the end of the
function exists is studied using similar scaling arguments an#@Per- Finally note that in this dynamics the densities of the

Monte Carlo simulations. We conclude in Sec. VI with a Various species are clearly not conserved. _
Under this dynamics an isolated interface, evolves as in a

s s

discussion. restricted solid on solidRSOS model, by which it is meant
that changes in thg position of the interface as one moves
in y directions are at most of magnitude 1. Moving interfaces
Il. THE COALESCING INTERFACES MODEL of this kind belong to the Kardar-Parisi-Zhati{PZ) univer-
sality class.
Our model is defined on B-dimensional hypercubic lat-  The coarsening process for a system of many interfaces

tice with periodic boundary conditions. The lattice is infinite can be understood in terms of the scaling properties of an
along one of its axes, which we labgland is of size_ along isolated interface. These properties will be discussed in detail
the d other axes labeleg=(y,,y,, ....yq). Each siter in the following section. However, at this point it is useful to
=(X,y) can be occupied by one gf—o° species of particles outline the general picture that emerges. Starting from a
S,=1,2,...4. In the initial configuration particles are ar- dense collection of flat interfaces, at early times interfaces
ranged in stripes of single species perpendicular toxhe meet and coalesce due to the evolution of their width
direction. The stripes are in increasing order of particle typewhich measures the lateral extent of the interface. Thus
their average extent along thedirection is/, and the in- the average distance between neighboring interfaces, scales
terfaces between them are flat. We are interested in coryith the width of an individual interface. So for early times,
structing a model where speciepropagates into specigs the dependence of on time is governed by the time evolu-
when j>i. In view of the initial configuration this can be tion of the width. In this regime the growth is independent of
simply achieved through the dynamics we now describe. L @nd is determined by an exponest

The model evolves under random sequential dynamics ac-

cording to the following rules: at each time step two neigh- /(t)~W~t#  atearly times. 2
boring sites along th& directionr = (x,y),r'=(x+1y) are
chosen randomly. If the particles at sites’ are not of the Since we are considering systems of finite dizen the

same species, then we proceed in one of the following waysiirections transverse to the drive, the width saturates to some
with probability 1/(1+p), wherep<1, the updateS, —S;  final valueWs,(L). Therefore at late times, when the width

is made, but only if the particles atand its neighbors along  of the interfaces has already saturated, interfaces meet due to
the y directions are of the same species; with probabilityfluctuations,Ah, in their center of mass positiam(t). That
p/(1+p) the updateS,—S;, is made, but only if the par- s,

ticles atr’ and its neighbors along thedirections are of the

same species. For example, in=2 the net effect of this 7

algorithm is for the following moves to occur with the rela- /(t)~Ah~— atlate times, 3

tive rates indicated above the arrows: ¢
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algebraic evolution of” in the two regimes which contrasts
with the logarithmic evolution of” found in the model stud-
ied in Ref.[29].

The proposed picture is valid only at time scales muchwherea= 8z.
larger than that required for the process of coalescence of The fluctuation in the average location of the interfAde
two interfaces. We find that at short times, the coalescencs dimensionally equivalent to the width so we may write, in
process takes in a finite time independent ofThis is be- a fashion similar to Eq(6),
cause neighboring interfaces touch at a finite density of
points. On the other hand, in the long time regime the time
scale for coalescence is found numerically to be proportional Ah:tﬁg( E) : ®
to L. This has to be borne in mind when testing the above

sca_tllwg picture. d d ined by the sinal For long times we expect the center of mass of the interface
_ The exponents, y, and ¢ are determined by the single 1 gifyse, namely, we expechh~t'2 so that g(x)
interface behavior. In the next section we introduce the scal-_, 12-5 5 v>-1_ Thus

ing analysis in a more quantitative way to obtain the expo-

)

where y and ¢ are exponents to be determined. Notice the tB,  for t/L?<1,
W~
LY, for t/L*>1,

nentsB,v, and ¢. Specifically, forp<1 the interfaces we {12
consider belong to the KPZ universality class, so the two when t>L?% Ah~—, 9
exponents are given in terms of known KPZ exponents. At L¢

the special poinp=1 the interfaces belong to the Edwards-

Wilkinson (EW) universality class, and the two exponentsWheree=2/2—a. _ o
are changed accordingly. For short times one needs to consider the specific univer-

sality class to which the interfaces belong. We start by re-
stricting ourselves to the cape<1 (the case op=1 will be
IIl. SCALING ANALYSIS discussed in Sec. )V In this case the dynamics is biased

As argued in the preceding section the evolution of thedlong thex direction, and the interfaces clearly belong to the

system is governed by the width of an isolated interface af<FZ universality class. , .
short times. On the other hand, at long times the width satu- FOr KPZ interfaces at short timeés<L“ it has been argued
rates due to the finite lateral extent of the system, whereas3] that there are two regimes depending on the ratio (
the fluctuation of the center of masaveragex position T 4)/z- Thatis,
keeps increasing. Thus at long times the center of mass fluc-

tuations govern the coarsening behavior. We now define i for d+4<4z

these quantities more precisely and quantify their scaling be- a2 ’

havior. _ _ _ when t<L? Ah~

The width of an interfac&V is defined by
——— for d+4>4z,
LZ(Z— 1)
1
W2:<F ; (Xy— h)2> , (4) (10

where§=(d+4)/2z—1.

We now use the width of the interfad® and the fluctua-
tion in its average positiolhh to deduce the average dis-
tance between the interfaces as a function of tififg). As

€Stated above, we will show thaw controls the early time

€ behavior whileAh controls the late time behavior of the
system. We assume that initially the average distance be-
tween the interfaceg, is much smaller than the width of a
fully developed isolated interface®. It will be shown that

wherex, is the location of the interface along thelirection
andh is the center of mas@verage locationof the interface
hzzyxy/Ld. The angular brackets denote an average ov
the dynamics, starting from the given initial condition. Th
fluctuation in the average location of the interfagé is
defined through

Ah?=((h—(h))?), (5 two distinct coarsening behaviors are expected fot.? and
t>L%
where as before angular brackets denote an average over theConsider first the long timet$L?) behavior of the sys-
dynamics. tem. From Eqgs(7) and (10) one can see thaih>W and
In general, for a fluctuating interface the scaling behavioithereforeAh is expected to control the time scale on which
of the width is given by(see, for example, Ref34]) interfaces coalesce. This implies that the average distance
between interfaces should behave as
t 12
=tBf| — t
W=t f( Lz)’ 6) [~ Lt (11)

wherez is the dynamic exponent. The scaling functi(x) Next, consider the short time behavidr(L?). In this case it
is constant fox<1 while f(x) ~x~# for x>1. This implies  is straightforward to verify, using the hyperscaling relation
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FIG. 2. Snapshots of d=1 system afa) t=10, (b) t=10® and(c) t=10°. HereL,=1000, L,=120 and the average initial spacing
between the interfaces i§,=4/3 lattice sites. For clarity, only one quarter of the system inxtirection is presented.

a+z=2, thatW>Ah for both regimes in Eq(10). Thus at is expected to scale according to Ed.1l), which in the
short times the coarsening behavior is controlled by thel=1 case is just’~tY4/LY4

width of the interface and is expected to behave as In the intermediate regim&h is comparable t&V and we
expect a crossover from the early to late time behavior. Fig-
/~tB t<LZ (12 ure 2b) shows a typical configuration at this stage of the

dynamics. We see from the figure that in this regime there is

We have thus shown thath controls the long time be- a significant probability of three interfaces meeting at a
point. This results in some arrested local configurations

havior andw the short time behavior. The short time behav- ; . X . -
ior is expected to be lost if the initial spacing between thewhere an interface is temporarlly fro;en in locally triangular
interfaces is larger thaw,~L®. Also, in models for which forms and the apparent width of the interface becomes large.

the interfaces are smoothr&0) the short time behavior is These configurations are then released when a fourth inter-

not expected to be seen. In the following we verify the pre_face approaches from the left and sweeps through the trian-

dictions of the scaling analysis by numerical studies of thedular forms. This effect is a direct consequence of the RSOS
models inD=2 andD =3 dimensions. condition of the model. We have explored variations of the

model in which the RSOS condition is relaxed, and found a
variety of model specific effects in this intermediate regime.
IV. MONTE CARLO SIMULATIONS Nevertheless the early and late time behaviors are not af-
fected by the details of the model.
The overall picture we have outlined is quantified in Fig.
3. In this figure the average distance between strifig$ is
plotted as a function of time and is compared with the width

We first consider the model iD=2 dimensions. The
model is simulated on a lattice of sikg < L, whereL, gives
the lateral size denoted Hyin the previous sections. Peri-

odic boundary conditions are used both in fendy direc- -y, and fluctuation in the average interface locatibn of a

tions. Particles of d|ffer9nt types are initially Qrdered n single isolated interface. We calculate the average distance
stripes parallel to thg axis. The positions of the interfaces between the stripes through=L L. /e,, wheree, is de-
between the stripes are chosen randomly, such that the mean xTyn e X

distance between them i§,. At each step two neighboring  1¢°
sites in thex direction, which are occupied by different spe-
cies are chosen randomly, and a move is made according to
Eq. (1), where we have usegal= 0 in our simulations. In this \
way we maximize the speed of the simulation. After each 10
such move, time is advanced by 1/e,, €, being the total
number of nearest neighbor pairs in thdirection occupied
by different species. The algorithm would be equivalent to a
usual Monte Carlo simulation if were drawn from a Pois-
son distribution with mean &/. Here we make the approxi-
mation 7= 1/e, which is valid as long ag, is large.

In Fig. 2 typical snapshots of the system at early, inter- 10°
mediate and late times are presented for a system of size
Ly=120 andL,=2000. The initial spacing between the in-

10' |

terfaces is/y=4/3. In Fig. 2a) the early time behavior is B . . . . .
shown. Here interfaces meet each other at several points in- " 1¢° 10’ 10° 10° 10* 10° 10°
dicating that their width is of the same order as the spacing t{MCS)

between them. Note that in order to see such configurations FIG. 3. Results of simulations fob=2. The mean spacing
the initial spacing between the interfaces must be Mucheyyeen interfaces” as a function of time is shown, along with
smaller than the final widthVg, of an isolated interface. At yyice the widthw and twiceAh, the fluctuations in average loca-
the short time regime the mean domain sizés expected o tjon of a single isolated interface. Note that at late tiresoin-
scale according to Eq12) which ford=1 reads/~t2. cides with 2Ah as expected, while at early timesis parallel tow.

At late times[Fig. 2(c)] the distance between interfaces is Here L,=1000, L=120, and time is measured in Monte Carlo
much larger than their width, and interfaces meet due t@&weeps. The results are obtained from an average over 20 simula-
fluctuations in their center of mass location. In this regithe tions for/ and 200 simulations fow and Ah.
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FIG. 4. Scaled average domain siz& Y4/tY2 for systems of . . .
sizeL =120, 160, 240. The collapse at long times demonstrates the FIG. 6. Results of simulations fob=3. The mean spacing
scaling predicted by Eq. 11. between interfaces as a function of time is shown, along with the

width W and the fluctuations in average locatidh of a single

. . . . isolated interface. Heré.,=1000, L=L,=L,=20, and time is
fined as above, namely, the total length in ghdirection of measured in Monte Carlo sweeps. The results/Aoare obtained

the interfaces. Similar results were obtained for various sysg .. o single run, while those fal andAh are averaged over 100
tem sizes. runs. ’

In Fig. 3 one can see that at early times the behaviof of
indeed closely follows that of &, while at late times it
closely follows that of Ah. The factors of 2 are because the
growth of /" is actually controlled by the sum of the fluctua-
tions of two neighboring interfaces. In the intermediate re
gime whereAh andW are comparable” deviates from both
curves. This reflects the triangular configurations observed i
this regime as discussed before.

We now make more precise tests of the scaling predic
tions. At late times {>L%) the scaling argument predicts a
specific dependence of ont andL, /~tY4/LY4 To test
this, in Fig. 4 we plot/LY4t'? againstt for various system
sizes. One can see that at late times the data indeed collap
confirming the predicted behavior.

To get a more quantitative test of the predictions of thethr
scaling argument at early times<L?) is more difficult. The

reason is that one has to access a regime in whicke W
while, at the same timeW displays its early time growth
behavior. To obtain a smalhh, and to increase the time
‘window in whichW keeps growing, we require a large lateral
sizeL. Also note that at short times a coalescence process of
two interfaces occurs in a finite time which does not grow
with L. This is because in this regime the neighboring inter-
faces touch at a finite density of points.

In Fig. 5 the average distance between the domédins
plotted as a function of for a system withL=10* and /),
=10. After a transient time the domain siZe-t# over more
tfran a decade, whep@=0.33+0.01 as expected.

Next we present results obtained from simulation of a
ee-dimensional systenD=3). In Fig. 6 the average dis-
tance between interfaceSis plotted along withw/ andAh

for a system withL,=L,=20. Again one can see that at
10° . . . early times/ follows closelyW while at late times it follows
Ah. While these simulations confirm the general picture out-
lined above, quantitative estimates of the exponents would
+ require a more elaborate study.

> V. UNBIASED DYNAMICS

¢ A We now study the casp=1. In this case one can asso-

] ciate with the dynamics a well-defined local energy function.
s B=0.33 Since at each update the numberxaieighbor pairs of dif-
. ferent species is reduced, the energy is Potts-like inxthe

* direction with unlike neighbor pairs costing energy. Unlike
+ pairs in they direction do not cost energy provided that the
. * RSOS condition is satisfied. Any step of the dynamics car-
W * . . .
10 X v = 4 ried out serves to lower the energy. In this way the dynamics
10 10 10 10 10 can be thought of as a zero temperature system approaching
t (MCS) R
an equilibrium state.

FIG. 5. Average domain siz& as a function of time, for ® Single interfaces in this special case belong to the EW
=2 system withL=10%. At short time one can seé~t# with 8 universality class, rather than to the KPZ class. Therefore the
=0.33+0.01 (dotted line. scaling analysis of Sec. Ill has to be applied to EW-type
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interfaces. This modifies the values of the exponents and also VI. DISCUSSION
the short time behavior akh.

For interfaces belonging to the EW universality class
Ah~tY2for all times. Therefore the scaling for(8) implies

In this work we have considered the evolution of a class
of striped structures. A coarsening process takes place in
which interfaces separating the stripes meet and coalesce.

12 The dynamics may thus be viewed as a generalization of the
Ah~ t_ (13) particle reaction diffusion procegst+ A— A to extended ob-
L¢ jects, the interfaces. In this generalization the coalescing ob-

jects have internal structure that in turn affects the evolution.
for all times, with ¢=2/2— « as before. We use the exact Thus one may have different scaling laws depending on the
values of the EW exponentz=2, a=1-d/2, B=1/2  properties of the coalescing objects.

—d/4 to find We studied a microscopic model defined through the dy-
namics of the interfaces that could realize both driven and

12 undriven interfaces. Both cases lead to rough interfaces

Ah~ LT/z (14 along with the average stripe width growing as a power law

in time. However, the two cases lead to different scaling

\zxponents. In the driven case an isolated interface exhibits
PZ behavior, while in the undriven case EW behavior is

lor of /(t). For long times {>L°) using Eqs(7), (13) and obtained. It is this scaling behavior of an isolated interface

the values of the EW exponents one finds tha®>W and 5t getermines both short and long time coarsening regimes

Ah is expected to control the mean distance between intefs¢ yhe stripes. We have shown that at early time the coarsen-
faces. Therefore

ing dynamics is determined by the width of the interfaces,

As in the previous case one can now determine the beha

(12 while at short time it is determined by the fluctuations in the
fme - t>|2 (15)  locations of the interfaces. The behavior is different from
Ld72 that of other driven models where the interfaces are smooth

and the coarsening is logarithmically slow in tif9].

For short times (<L?) we haveW~t#>Ah. Therefore The analysis performed in this paper should apply also to

the coarsening is governed by the width of the interfaces andther classes of interfaces. For example, the scaling behavior
Joflzdis gy 2 (16) of moving fronts or interfaces has been studied for the case
i ' : of “pulled” fronts, moving into an unstable phase. Recently,

To summarize, in this case, just as in e 1 caseAh it has been suggles.ted_that such an interfa_lce is not of the KPZ
controls the long time behavior ai the short time behav- YP€[35-37. This indicates that there might be other pos-
ior. The difference between the two cases is due to the dif§'t,’Ie types of scaling behaylor than those we have StUd'e_d n
ferent values of the exponenis 3, andz and is thus a direct this paper. It would be of interest to expl_ore such possible
consequence of the universality class. dynamics and study the resulting coarsening.

Monte Carlo simulations iD=2 with no bias support
these findings. The simulations show that indeed at early
times/ ~tY*and at late timeg ~tY%/L'?in agreement with M.R.E. and D.M. thank the Einstein Center and the Uni-
the scaling argument and the known EW exponents. Theersity of Edinburgh for support and hospitality during mu-
results for the evolution of” are qualitatively similar to tual visits. The support of the Israeli Science Foundation is
those of the KPZ case and we do not display them here. gratefully acknowledged.
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