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Coarsening of a class of driven striped structures

M. R. Evans,1 Y. Kafri,2 E. Levine,2 and D. Mukamel2
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2Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel
~Received 17 August 2000!

The coarsening process in a class of driven systems exhibiting striped structures is studied. The dynamics is
governed by the motion of the driven interfaces between the stripes. When two interfaces meet they coalesce
thus giving rise to a coarsening process in whichl (t), the average width of a stripe, grows with time. This is
a generalization of the reaction-diffusion processA1A→A to the case of extended coalescing objects, namely,
the interfaces. Scaling arguments which relate the coarsening process to the evolution of a single driven
interface are given, yielding growth laws forl (t), for both short and long times. We introduce a simple
microscopic model for this process. Numerical simulations of the model confirm the scaling picture and growth
laws. The results are compared to the case where the stripes are not driven and different growth laws arise.

PACS number~s!: 05.40.2a, 05.70.Ln, 05.70.Np, 64.60.Cn
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I. INTRODUCTION

Coarsening processes have been extensively studied
experimentally and theoretically over the past decades@1,2#.
Most of these studies deal with the way a system approa
its thermal equilibriumstate. For example, when a liquid
quenched to temperatures below the liquid-gas transi
point a coarsening process takes place as the system ev
towards the equilibrium phase separated state. In these
tems the order parameter~the density! is conserved and the
evolution proceeds by either nucleation growth or by sp
odal decomposition@3#. Similar processes take place in ma
netic systems where a system evolves towards its mag
cally ordered state when quenched below its critical point
that case, however, the order parameter~the magnetization!
need not be conserved by the dynamics and the details o
coarsening mechanism may differ from that of conserv
dynamics.

Typically coarsening processes are characterized b
single growing length scalel (t), for example the averag
domain size in the system. In many cases, at late times
system reaches a scaling regime wherel (t);tn. The value
of the exponentn usually depends on the symmetry of th
system and its conservation laws. It has been found that f
scalar order parameter that is not conserved under the
namics~as is the case in many magnetic systems! the growth
exponent isn51/2 @4#. This has been demonstrated theore
cally by numerous studies of Ising-type models with Glau
dynamics@5#. On the other hand, when the order paramete
conserved~such as in liquid gas transitions and in pha
separation in binary mixtures! the coarsening process
slower and the growth exponent was found to ben51/3.
This was first demonstrated by Lifshitz, Slyozov, and Wa
ner @6,7# and has been confirmed by many studies of Is
models with Kawasaki dynamics@8,2#.
PRE 621063-651X/2000/62~6!/7619~8!/$15.00
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More recently, attention has focused on systems far fr
thermal equilibrium, driven by an external field@9#. In many
cases such systems reach a steady state in which, unlik
equilibrium case, detailed balance is not obeyed. The lac
detailed balance allows for many phenomena which do
occur in thermal equilibrium, such as phase separation
symmetry breaking in one-dimensional systems@10,11#.
Most of the recent studies of these systems have been
cused on the properties of the steady state itself rather
on the evolution towards it. There are, however, indicatio
that coarsening processes in these systems may be r
different from those of systems evolving toward their eq
librium state. For example, a study of the evolution of
driven Ising model with conserving dynamics has shown t
in one dimension the average domain size grows ast1/2

@12,13# rather than the usualt1/3 expected for nondriven sys
tems.

The presence of the drive introduces a preferred direc
in space, making the systems inherently anisotropic. In m
of these systems this results in striped structures. Typ
examples are the stepped structures which occur in sur
growth @14# and wind ripples formed in sand@15,16#. Many
models of driven systems have been introduced and stu
in recent years. The striped structures that naturally eme
may be oriented either parallel or perpendicular to the d
ing field, depending on the details of the dynamics@9#. For
example, in a driven Ising model introduced by Katzet al.
@17# stripes parallel to the driving field of alternating up an
down spins are found at low temperatures. When the sys
is quenched to the low temperature phase at high value
the driving field narrow stripes are formed on a short tim
scale. On a longer time scale a coarsening process t
place in which the typical width of these stripes grows
time as the system evolves towards a fully phase separ
state. This coarsening process is rather different from the
7619 ©2000 The American Physical Society
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taking place in a system evolving towards its equilibriu
state and is not well understood@18,19#. On the other hand
stripes perpendicular to the drive direction are observed
related spin-1 type models where two types of opposit
charged particles move in the presence of neutral vacan
@20–22,38#.

Recently, a different class of driven models, where ph
separation takes place even in one dimension, has bee
troduced@23–28#. In this class of models three or more typ
of particle are driven in a preferred direction under loc
dynamics. The important feature in these models is that
local dynamics results in a phase separated state even in
dimension (D51). It has been demonstrated that inD51
the coarsening process which accompanies the phase se
tion is slow, by which it is meant that the average dom
size grows only logarithmically with time. An extension o
one of the models belonging to this class to two and hig
dimensions@29# showed that in dimensions greater than o
stripes of alternating types of particles are formed perp
dicular to the driving field. The width of the stripes along t
direction of the driving field is found to grow as ln(t), which
is the same growth law as the one dimensional case. Th
related to the fact that the interfaces which separate adja
stripes are macroscopically smooth.

Given the common occurrence of striped structures in
ferent classes of driven models, it is of interest to explore
possible coarsening phenomena within a wider range
models exhibiting these structures. For example, in the
ceding paragraph we described a driven system with c
serving dynamics exhibiting slow coarsening. This behav
can be attributed to the smoothness of the interfaces sep
ing neighboring stripes. A natural question is as to how
coarsening of stripes is altered when one considers m
general scenarios such as, say, nonconserving dynamic
dynamics which leads to rough interfaces separating
stripes.

To investigate this issue we study in this paper a sim
model for the evolution of driven striped structures. In t
model stripes emerge oriented perpendicular to the driv
field. The microscopic dynamics is nonconserving and rou
interfaces between the stripes arise. We consider a syste

FIG. 1. Schematic representation of the model.~a! Domains are
aligned parallel to each other, and are assigned one ofq→` spin
states in an ordered manner.~b! When two interfaces meet the
coalesce into a single interface.
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infinite extent in the direction parallel to the drive and
finite sizeL in the other directions@see Fig. 1~a!#. A detailed
definition of the microscopic model and its dynamics
given in Sec. II. Here we just describe the salient feature

~i! A microscopic state of the system is given by the co
figurations of the interfaces separating adjacent stripes@Fig.
1~a!#. These interfaces are assumed to be single valued,
is no bubbles or overhangs are present.

~ii ! Each interface evolves under local driven dynami
For example, one can consider growth dynamics belong
to the KPZ universality class. All interfaces evolve under t
same dynamical rules, and thus, in particular, they all mo
in the same direction and with the same average velocity

~iii ! When two interfaces meet at a point, they loca
merge to form a single interface. The evolution is such t
after some time the entire two interfaces coalesce@Fig. 1~b!#.

As a result of this dynamical process the number of int
faces keeps decreasing and the average width of a stripel (t)
increases with time. One is interested in studying the det
of this coarsening process.

One can think of the model in analogy to aq→` state
Potts system, where each site is assigned a spin variabS
51,2, . . . ,q. In the initial configuration the spins in eac
stripe are given the same state and the state associated
each stripe increases in an ordered sequence 1,2,3, . . . @see
Fig. 1~a!#. Each stateS5 i propagates into statesS5 j where
j . i . Clearly, the dynamics is such that the order parame
~the density of particles of typeS) is not conserved since th
number of particles of a given state changes in time. Rela
models have previously been considered in the contex
cyclic food chain@30# and the evolution of the spatial mosa
of single-species domains was studied.

As a general motivation for the type of model we stud
one may think of the spin state as representing the heigh
a D-dimensional terraced surface. Thus the striped struc
corresponds to a sequence of terraces of increasing heigh
interface between two stripes corresponds to a step. The
face evolves through particles being adsorbed or evapor
from the steps. In this picture two coalescing interfaces c
respond to a terrace of a given height being eliminated fr
the system. However, the model to be studied in this pa
should not be viewed as a microscopic description of t
particular growth process. Rather it provides a very sim
dynamics that leads to coarsening of stripes with no bubb
or overhangs in the interfaces between stripes. In orde
construct a realistic microscopic model for a particular s
tem ~such as the terraced surface! one would have to add
other features that would complicate analysis of the mod

The dynamical process described above is a genera
tion of the reaction diffusion processA1A→A, in which
diffusing A particles~either with or without a drive! undergo
a merging reaction as they collide. In the present general
tion the coalescing objects are not particles but extended
jects, i.e., the interfaces between stripes, which are manif
in d5D21 dimensions. TheA1A→A reaction diffusion
process has been studied in detail over the years@31#. It has
been found that for both biased and unbiased diffusion
density ~or equivalently the average distance between p
ticles! decays ast2D/2 for D,2 andt21 for D.2 @32#. It is
of interest to investigate how this behavior is changed for
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generalization to coalescing manifolds. In the present c
textthe manifolds themselves evolve in time, due to a rou
ening process, which could also affect the behavior.

The scaling properties of driven manifolds are differe
from those of stationary ones. It is of interest to consider
evolution of striped structures when the interfaces are n
driven. In this case the dynamics can be related to an en
function. As we shall see, the coarsening process is affe
by whether or not the interfaces are driven, unlike the cas
coalescing particles described in the previous paragraph

In studying the model we find that the coarsening proc
may be well understood by considering the scaling proper
of an isolated interface. We find that the evolution is diffe
ent at early and late times. In both regimes the average
main sizel (t) grows algebraically in time. The differen
regimes, however, are characterized by different expone
These exponents are determined by the universal prope
of the isolated interfaces and can therefore be deduced u
scaling arguments. Moreover, the exponents depend
whether the interfaces are driven or not.

The paper is organized as follows. In Sec. II we define
model. In Sec. III a scaling argument which is based on
properties of an isolated interface is used to deduce
coarsening behavior. Monte Carlo simulations which ver
the scaling argument are described in Sec. IV. In Sec. V
special case where the interfaces are nondriven and en
function exists is studied using similar scaling arguments
Monte Carlo simulations. We conclude in Sec. VI with
discussion.

II. THE COALESCING INTERFACES MODEL

Our model is defined on aD-dimensional hypercubic lat
tice with periodic boundary conditions. The lattice is infini
along one of its axes, which we labelx, and is of sizeL along
the d other axes labeledy5(y1 ,y2 , . . . ,yd). Each siter
5(x,y) can be occupied by one ofq→` species of particles
Sr51,2, . . . ,q. In the initial configuration particles are a
ranged in stripes of single species perpendicular to thx
direction. The stripes are in increasing order of particle ty
their average extent along thex direction is l 0 and the in-
terfaces between them are flat. We are interested in c
structing a model where speciesi propagates into speciesj
when j . i . In view of the initial configuration this can b
simply achieved through the dynamics we now describe.

The model evolves under random sequential dynamics
cording to the following rules: at each time step two neig
boring sites along thex direction r5(x,y),r 85(x11,y) are
chosen randomly. If the particles at sitesr ,r 8 are not of the
same species, then we proceed in one of the following wa
with probability 1/(11p), wherep,1, the updateSr8→Sr
is made, but only if the particles atr and its neighbors along
the y directions are of the same species; with probabi
p/(11p) the updateSr→Sr8 is made, but only if the par-
ticles atr 8 and its neighbors along they directions are of the
same species. For example, inD52 the net effect of this
algorithm is for the following moves to occur with the rel
tive rates indicated above the arrows:
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where an empty square indicates that the move is attem
irrespective of the type of particle at that site.

Given the initial conditions, this dynamics ensures th
the species index always increases to the right, along thx
direction. This is equivalent to stating that the interfaces
single valued and that the order among the interfaces is
served. Furthermore, whenp,1 the dynamics is such tha
speciesi is driven preferentially to the right into neighborin
speciesj where j . i . The casep51 is special in that inter-
faces are not driven. In the following we considerp,1 and
we discuss the special casep51 towards the end of the
paper. Finally note that in this dynamics the densities of
various species are clearly not conserved.

Under this dynamics an isolated interface, evolves as
restricted solid on solid~RSOS! model, by which it is meant
that changes in thex position of the interface as one move
in y directions are at most of magnitude 1. Moving interfac
of this kind belong to the Kardar-Parisi-Zhang~KPZ! univer-
sality class.

The coarsening process for a system of many interfa
can be understood in terms of the scaling properties of
isolated interface. These properties will be discussed in de
in the following section. However, at this point it is useful
outline the general picture that emerges. Starting from
dense collection of flat interfaces, at early times interfa
meet and coalesce due to the evolution of their widthW,
which measures the lateral extent of the interface. Thusl ,
the average distance between neighboring interfaces, sc
with the width of an individual interface. So for early time
the dependence ofl on time is governed by the time evolu
tion of the width. In this regime the growth is independent
L and is determined by an exponentb

l ~ t !;W;tb at early times. ~2!

Since we are considering systems of finite sizeL in the
directions transverse to the drive, the width saturates to s
final valueWsat(L). Therefore at late times, when the wid
of the interfaces has already saturated, interfaces meet d
fluctuations,Dh, in their center of mass positionh(t). That
is,

l ~ t !;Dh;
tg

Lf
at late times, ~3!
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whereg and f are exponents to be determined. Notice t
algebraic evolution ofl in the two regimes which contrast
with the logarithmic evolution ofl found in the model stud-
ied in Ref.@29#.

The proposed picture is valid only at time scales mu
larger than that required for the process of coalescenc
two interfaces. We find that at short times, the coalesce
process takes in a finite time independent ofL. This is be-
cause neighboring interfaces touch at a finite density
points. On the other hand, in the long time regime the ti
scale for coalescence is found numerically to be proportio
to L. This has to be borne in mind when testing the abo
scaling picture.

The exponentsb,g, andf are determined by the singl
interface behavior. In the next section we introduce the s
ing analysis in a more quantitative way to obtain the ex
nentsb,g, and f. Specifically, forp,1 the interfaces we
consider belong to the KPZ universality class, so the t
exponents are given in terms of known KPZ exponents.
the special pointp51 the interfaces belong to the Edward
Wilkinson ~EW! universality class, and the two exponen
are changed accordingly.

III. SCALING ANALYSIS

As argued in the preceding section the evolution of
system is governed by the width of an isolated interface
short times. On the other hand, at long times the width s
rates due to the finite lateral extent of the system, wher
the fluctuation of the center of mass~averagex position!
keeps increasing. Thus at long times the center of mass
tuations govern the coarsening behavior. We now de
these quantities more precisely and quantify their scaling
havior.

The width of an interfaceW is defined by

W25K 1

Ld (
y

~xy2h!2L , ~4!

wherexy is the location of the interface along thex direction
andh is the center of mass~average location! of the interface
h5(y xy /Ld. The angular brackets denote an average o
the dynamics, starting from the given initial condition. T
fluctuation in the average location of the interfaceDh is
defined through

Dh25^~h2^h&!2&, ~5!

where as before angular brackets denote an average ove
dynamics.

In general, for a fluctuating interface the scaling behav
of the width is given by~see, for example, Ref.@34#!

W5tb f S t

LzD , ~6!

wherez is the dynamic exponent. The scaling functionf (x)
is constant forx!1 while f (x);x2b for x@1. This implies
e
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W;H tb, for t/Lz!1,

La, for t/Lz@1,
~7!

wherea5bz.
The fluctuation in the average location of the interfaceDh

is dimensionally equivalent to the width so we may write,
a fashion similar to Eq.~6!,

Dh5tbgS t

LzD . ~8!

For long times we expect the center of mass of the interf
to diffuse, namely, we expectDh;t1/2, so that g(x)
;x1/22b for x@1. Thus

when t@Lz, Dh;
t1/2

Lw
, ~9!

wherew5z/22a.
For short times one needs to consider the specific uni

sality class to which the interfaces belong. We start by
stricting ourselves to the casep,1 ~the case ofp51 will be
discussed in Sec. V!. In this case the dynamics is biase
along thex direction, and the interfaces clearly belong to t
KPZ universality class.

For KPZ interfaces at short timest!Lz it has been argued
@33# that there are two regimes depending on the ratiod
14)/z. That is,

when t!Lz, Dh;5
tu

Ld/2
for d14,4z,

t

L2(z21)
for d14.4z,

~10!

whereu5(d14)/2z21.
We now use the width of the interfaceW and the fluctua-

tion in its average positionDh to deduce the average dis
tance between the interfaces as a function of timel (t). As
stated above, we will show thatW controls the early time
behavior whileDh controls the late time behavior of th
system. We assume that initially the average distance
tween the interfacesl 0 is much smaller than the width of
fully developed isolated interfaceLa. It will be shown that
two distinct coarsening behaviors are expected fort!Lz and
t@Lz.

Consider first the long time (t@Lz) behavior of the sys-
tem. From Eqs.~7! and ~10! one can see thatDh@W and
thereforeDh is expected to control the time scale on whi
interfaces coalesce. This implies that the average dista
between interfaces should behave as

l ;
t1/2

Lw
t@Lz. ~11!

Next, consider the short time behavior (t!Lz). In this case it
is straightforward to verify, using the hyperscaling relati
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FIG. 2. Snapshots of ad51 system at~a! t510, ~b! t5103, and~c! t5105. HereLx51000, Ly5120 and the average initial spacin

between the interfaces isl 054/3 lattice sites. For clarity, only one quarter of the system in thex̂ direction is presented.
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a1z52, thatW@Dh for both regimes in Eq.~10!. Thus at
short times the coarsening behavior is controlled by
width of the interface and is expected to behave as

l ;tb t!Lz. ~12!

We have thus shown thatDh controls the long time be
havior andW the short time behavior. The short time beha
ior is expected to be lost if the initial spacing between
interfaces is larger thanWsat;La. Also, in models for which
the interfaces are smooth (a<0) the short time behavior is
not expected to be seen. In the following we verify the p
dictions of the scaling analysis by numerical studies of
models inD52 andD53 dimensions.

IV. MONTE CARLO SIMULATIONS

We first consider the model inD52 dimensions. The
model is simulated on a lattice of sizeLx3Ly whereLy gives
the lateral size denoted byL in the previous sections. Per
odic boundary conditions are used both in thex andy direc-
tions. Particles of different types are initially ordered
stripes parallel to they axis. The positions of the interface
between the stripes are chosen randomly, such that the m
distance between them isl 0. At each step two neighboring
sites in thex direction, which are occupied by different sp
cies are chosen randomly, and a move is made accordin
Eq. ~1!, where we have usedp50 in our simulations. In this
way we maximize the speed of the simulation. After ea
such move, time is advanced byt51/ex , ex being the total
number of nearest neighbor pairs in thex direction occupied
by different species. The algorithm would be equivalent t
usual Monte Carlo simulation ift were drawn from a Pois
son distribution with mean 1/ex . Here we make the approxi
mationt51/ex which is valid as long asex is large.

In Fig. 2 typical snapshots of the system at early, int
mediate and late times are presented for a system of
Ly5120 andLx52000. The initial spacing between the in
terfaces isl 054/3. In Fig. 2~a! the early time behavior is
shown. Here interfaces meet each other at several point
dicating that their width is of the same order as the spac
between them. Note that in order to see such configurat
the initial spacing between the interfaces must be m
smaller than the final widthWsat of an isolated interface. A
the short time regime the mean domain sizel is expected to
scale according to Eq.~12! which for d51 readsl ;t1/3.

At late times@Fig. 2~c!# the distance between interfaces
much larger than their width, and interfaces meet due
fluctuations in their center of mass location. In this regimel
e
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is expected to scale according to Eq.~11!, which in the
d51 case is justl ;t1/2/L1/4.

In the intermediate regimeDh is comparable toW and we
expect a crossover from the early to late time behavior. F
ure 2~b! shows a typical configuration at this stage of t
dynamics. We see from the figure that in this regime ther
a significant probability of three interfaces meeting at
point. This results in some arrested local configuratio
where an interface is temporarily frozen in locally triangu
forms and the apparent width of the interface becomes la
These configurations are then released when a fourth in
face approaches from the left and sweeps through the tr
gular forms. This effect is a direct consequence of the RS
condition of the model. We have explored variations of t
model in which the RSOS condition is relaxed, and found
variety of model specific effects in this intermediate regim
Nevertheless the early and late time behaviors are not
fected by the details of the model.

The overall picture we have outlined is quantified in F
3. In this figure the average distance between stripesl (t) is
plotted as a function of time and is compared with the wid
W and fluctuation in the average interface locationDh of a
single isolated interface. We calculate the average dista
between the stripes throughl 5LxLy /ex , whereex is de-

FIG. 3. Results of simulations forD52. The mean spacing
between interfacesl as a function of time is shown, along wit
twice the widthW and twiceDh, the fluctuations in average loca
tion of a single isolated interface. Note that at late timesl coin-
cides with 2Dh as expected, while at early timesl is parallel toW.
Here Lx51000, L5120, and time is measured in Monte Car
sweeps. The results are obtained from an average over 20 sim
tions for l and 200 simulations forW andDh.
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fined as above, namely, the total length in they direction of
the interfaces. Similar results were obtained for various s
tem sizes.

In Fig. 3 one can see that at early times the behavior ol
indeed closely follows that of 2W, while at late times it
closely follows that of 2Dh. The factors of 2 are because th
growth of l is actually controlled by the sum of the fluctu
tions of two neighboring interfaces. In the intermediate
gime whereDh andW are comparablel deviates from both
curves. This reflects the triangular configurations observe
this regime as discussed before.

We now make more precise tests of the scaling pre
tions. At late times (t@Lz) the scaling argument predicts
specific dependence ofl on t and L, l ;t1/2/L1/4. To test
this, in Fig. 4 we plotl L1/4/t1/2 againstt for various system
sizes. One can see that at late times the data indeed coll
confirming the predicted behavior.

To get a more quantitative test of the predictions of
scaling argument at early times (t!Lz) is more difficult. The

FIG. 5. Average domain sizel as a function of time, for aD
52 system withL5104. At short time one can seel ;tb with b
50.3360.01 ~dotted line!.

FIG. 4. Scaled average domain sizel L1/4/t1/2 for systems of
sizeL5120, 160, 240. The collapse at long times demonstrates
scaling predicted by Eq. 11.
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e

reason is that one has to access a regime in whichDh!W
while, at the same time,W displays its early time growth
behavior. To obtain a smallDh, and to increase the time
window in whichW keeps growing, we require a large later
sizeL. Also note that at short times a coalescence proces
two interfaces occurs in a finite time which does not gro
with L. This is because in this regime the neighboring int
faces touch at a finite density of points.

In Fig. 5 the average distance between the domainsl is
plotted as a function oft for a system withL5104 and l 0
510. After a transient time the domain sizel ;tb over more
than a decade, whereb50.3360.01 as expected.

Next we present results obtained from simulation of
three-dimensional system (D53). In Fig. 6 the average dis
tance between interfacesl is plotted along withW andDh
for a system withLy5Lz520. Again one can see that a
early timesl follows closelyW while at late times it follows
Dh. While these simulations confirm the general picture o
lined above, quantitative estimates of the exponents wo
require a more elaborate study.

V. UNBIASED DYNAMICS

We now study the casep51. In this case one can asso
ciate with the dynamics a well-defined local energy functio
Since at each update the number ofx neighbor pairs of dif-
ferent species is reduced, the energy is Potts-like in thx
direction with unlike neighbor pairs costing energy. Unlik
pairs in they direction do not cost energy provided that th
RSOS condition is satisfied. Any step of the dynamics c
ried out serves to lower the energy. In this way the dynam
can be thought of as a zero temperature system approac
an equilibrium state.

Single interfaces in this special case belong to the E
universality class, rather than to the KPZ class. Therefore
scaling analysis of Sec. III has to be applied to EW-ty

FIG. 6. Results of simulations forD53. The mean spacing
between interfacesl as a function of time is shown, along with th
width W and the fluctuations in average locationDh of a single
isolated interface. HereLx51000, L5Ly5Lz520, and time is
measured in Monte Carlo sweeps. The results forl are obtained
from a single run, while those forW andDh are averaged over 100
runs.
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interfaces. This modifies the values of the exponents and
the short time behavior ofDh.

For interfaces belonging to the EW universality cla
Dh;t1/2 for all times. Therefore the scaling form~8! implies

Dh;
t1/2

Lf
~13!

for all times, with f5z/22a as before. We use the exa
values of the EW exponents:z52, a512d/2, b51/2
2d/4 to find

Dh;
t1/2

Ld/2
. ~14!

As in the previous case one can now determine the be
ior of l (t). For long times (t@L2) using Eqs.~7!, ~13! and
the values of the EW exponents one finds thatDh@W and
Dh is expected to control the mean distance between in
faces. Therefore

l ;
t1/2

Ld/2
, t@L2. ~15!

For short times (t!L2) we haveW;tb@Dh. Therefore
the coarsening is governed by the width of the interfaces

l ;t1/22d/4, t!L2. ~16!

To summarize, in this case, just as in thepÞ1 case,Dh
controls the long time behavior andW the short time behav
ior. The difference between the two cases is due to the
ferent values of the exponentsa, b, andz and is thus a direc
consequence of the universality class.

Monte Carlo simulations inD52 with no bias support
these findings. The simulations show that indeed at e
timesl ;t1/4 and at late timesl ;t1/2/L1/2 in agreement with
the scaling argument and the known EW exponents.
results for the evolution ofl are qualitatively similar to
those of the KPZ case and we do not display them here
.
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VI. DISCUSSION

In this work we have considered the evolution of a cla
of striped structures. A coarsening process takes plac
which interfaces separating the stripes meet and coale
The dynamics may thus be viewed as a generalization of
particle reaction diffusion processA1A→A to extended ob-
jects, the interfaces. In this generalization the coalescing
jects have internal structure that in turn affects the evoluti
Thus one may have different scaling laws depending on
properties of the coalescing objects.

We studied a microscopic model defined through the
namics of the interfaces that could realize both driven a
undriven interfaces. Both cases lead to rough interfa
along with the average stripe width growing as a power l
in time. However, the two cases lead to different scal
exponents. In the driven case an isolated interface exh
KPZ behavior, while in the undriven case EW behavior
obtained. It is this scaling behavior of an isolated interfa
that determines both short and long time coarsening regi
of the stripes. We have shown that at early time the coars
ing dynamics is determined by the width of the interfac
while at short time it is determined by the fluctuations in t
locations of the interfaces. The behavior is different fro
that of other driven models where the interfaces are smo
and the coarsening is logarithmically slow in time@29#.

The analysis performed in this paper should apply also
other classes of interfaces. For example, the scaling beha
of moving fronts or interfaces has been studied for the c
of ‘‘pulled’’ fronts, moving into an unstable phase. Recent
it has been suggested that such an interface is not of the
type @35–37#. This indicates that there might be other po
sible types of scaling behavior than those we have studie
this paper. It would be of interest to explore such possi
dynamics and study the resulting coarsening.
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